Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9
نویسندگان
چکیده
Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(v)β(3) caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.
منابع مشابه
Matrix stiffening promotes a tumor vasculature phenotype.
Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite f...
متن کاملSeptin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV
The accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver. HCV ...
متن کاملRole of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native ...
متن کاملExtracellular Matrix Density Regulates Extracellular Proteolysis via Modulation of Cellular Contractility
The Extracellular Matrix (ECM) undergoes changes in composition and organization during tumor progression. In breast cancer, increased deposition and cross linking-induced alignment of collagen I create a stiffer microenvironment that directly contributes to cancer invasion. While ECM stiffness-induced invasion has been documented, it remains unclear if ECM density also contributes to invasion ...
متن کاملMacrophage matrix metalloproteinase-9 regulates angiogenesis in ischemic muscle.
Angiogenesis is the formation of new blood vessels from existing endothelial cell–lined vessels. It occurs during normal development, and in many pathological conditions including tumor growth, would healing, inflammation, ischemia, and atherosclerosis. The development of new vessels can occur by abluminal sprouting of endothelial cells to form new branches or by the longitudinal splitting of e...
متن کامل